
. 
I 

On the Measurement and Use of Time- Varying Communication Channels" I 1  

William L. Root 

The University of Michigan 

GPO PRICE $ 

OTS PRICE(S) $ 

Hard copy (HC) 2 3 0  

Microfiche (M F) 

e+-/+ 
This paper,prepared at  the Mathematics Research Center, United 

States Army, the University of Wisconsin under Contract No. DA-11-022- 

o RD- 2059 andbat The University of Michigan under National Aeronautics 
rauh af 

and Space Administration gran 



l ABSTRACT 

In radio, radar, sonar and seismic signal detection theje'is often the 

problem of processing received signals  which have been distorted by a linear 

I 
I operation in the process of being transmitted. Examples a r e  scattering and 

I multiple-path propagation of radio waves. Usually the nature of this linear 

operation cannot be known very precisely in advance, and it often is changing 

in time, so that in order to car ry  out effective processing of the received 

signals it is necessary repeatedly to test and measure the mode of transmission, 

o r  channel a s  it w i l l  be called. 
i 

In this paper the beginnings of a theory a r e  established concerning 

I time-varying and random linear channels with the intent of characterizing 

classes  of channels which can be determined exactly or approximately by 

measurement, showing how the measurements can be made, analyzing the 

errors, and applying the results to the theory of signal detection. 

, The notion of a determinable class of channels is defined and general 

examples are given. These include classes of channels that a r e  time- 

invariant, periodic, and which vary with a known trend. The measurement 

of slowly-varying channels by approximation by time- invariant ones belonging 

to a known determinable class is discussed. Relation between almost-time- 

invariance of a channel and the correlation properties of a kind of stationary 

random channel a r e  developed and tied-in with the channel measurement theory. 

An application is made to the problem of detecting sure  s ignals jn  noise when 

the channel is slowly-varying. 
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ON THE MEASUREMENT AND USE OF 

TIME- VARYING COMMUNICATION CHANNELS 

W. L. Root 

1. Introduction 

A considerable amount of work in recent years has gone into the 

study of how to process received radio, radar, sonar or  seismic signals 

so a s  effectively to recover certain intelligence from these signals when 

they have been disfigured in  transmission. Multiple ray paths, as occur 

in radio wave reflection f rom the ionosphere, or sound wave transmission 

in relatively shallow water, scattering from an irregular surface, such 

a s  the moon, or from randomly occurring inhomogeneities in the trans- 

mission medium, a r e  typical phenomena which can result in time-varying, 

frequency- shifted and sometimes apparently random superpositions of 

the emitted waveform at the receiver. Usually, in addition, there is noise 

at the receiver of a highly random character of essentially thermal origin. 

A great many problems of signal processing in situations of the kind indi- 

cated can be based on a mathematical model in which the total received 

waveform is represented as  the sum of two waveforms, one the result of 

a linear operation on the emitted signal, and the other a completely inde- 

pendent random noise. 

and may or  may not be random. 

mining the linear operation, the emitted signal and the noise. 

The linear operation may or may not be time-varying 

There may be unknown parameters deter- 

In this paper an attempt is made to begin a systematic study of 

certain aspects of the measurement and data processing problems arising 

when the linear operation on the signal (henceforth called the channel operation) 

is initially unknown. The primary concern is with measuring channel 

Sponsored by the Mathematics Research Center, United States Army, 
Madison, Wisconsin, under Contract NO. : DA-11- 022-ORD- 2059, 
This work w a s  also partly supported by the National Aeronautics and 
Space Administration under research grant NsG-2- 59. 
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characteristics so that these characteristics may be available for communi- 

cation signal processing. 

considered in most detail. 

The special case of slowly-varying channels is 

We suppose that the total received signal w(t) for both measurement 

and communication situations is of the form 

w( t )  = y(t;a) + n(t)  , T i  5 t 5 7 2  

where n(t) is noise and y(t;a) is the response of the linear channel to an 

input signal. In particular, we write 

y(t;a) = h( t ,  s f  x (s ;a )  ds, Ti 5 t 5 T z  ( 2 )  

Nt) 
where x(t;a) is for each a a known function of s representing the emitted 

signal, h(t;s) is a kernel characterizing the channel and y(t;a) is, a s  in 

Eq. (11, the intelligence-bearing signal a t  the receiver. We a r e  modeling 

the channel a s  a linear integral operator, or more properly as  a collection 

of linear integral operators, depending upon T~ , T Z  and the sets  A(t), each 

with kernel h(t, s) where  h(t, s )  is presumed to be defined for 

Thus, the channel is identified by the kernel h(t, s ) .  

take h to be an ordinary real-valued function, and sometimes take it to be a 

sample function from a stochastic process, i. e. h(. , . ) h(. , . , w 1 where 

w is an element of a probability space. 

stochastic channel operators. 

-00 C t, s < co. 
We shall sometimes 

In the latter case we  talk about 

In Section 2, the basic definitions and notations a r e  introduced. In 

Section 3, the question is studied of how much prior information is needed 

about a channel in order that it can be precisely determined from measurement. 

This question is stated in the form: how can classes of possible channels 
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be characterized so that a channel belonging to such a known class is 

identifiable from certain kinds of measurements? The formal definition 

of a determinable class is introduced a s  an answer to this question and 

examples a r e  given. These examples include classes of time invariant 

channels, classes of periodic channels, and channels with known trend. 

In Section 4, the measurement of slowly-varying channels is 

considered; the idea- used is to approximate a slowly-varying channel by 

a time-invariant one belonging to a known determinable class. 

bounds a r e  established. In Section 5, the results of Section 4 a r e  applied 

to a study of the e r r o r s  resulting in a classical sure-signal-in-noise 

detection problem when the channel is slowly varying. 

Error 

The previous work which seems closest in spirit to most of this  

is that of Kailath (1959) on channel measurement. 

approach here is different, more abstract and more general but with 

results less applicable from an engineering point of view. 

definition of a determinable class, but the idea of making such a definition 

and using it a s  a starting point is apparently new. It is hoped eventually 

to obtain information-theory- like results about channel measurement and 

use centered around the notion of determinable classes, but very little 

has been accomplished. 

closed determinable classes a r e  compact (this and other mathematical 

properties of determinable classes a r e  shown in a forthcoming report  by 

R. P rosse r  and the author) and therefore the notions of €-entropy and 

E -capacity (see Kolmogorov and Tihomorovf 1959) a r e  applicable. For 

general background on time-varying channels see Price and Green (1961 ) 

and the survey paper by Kailath ( 1963 ) with its accompanying bibliography. 

Superficially the 

Not only the 

In this connectior, it may be noted that bounded 
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2.  Definitions and Conditions 

If x(t)  is the signal emitted during a time interval of interest, 

a 5 t I b, and y(t) is the channel output during a time interval c I t I d, 

resulting from x( t ) ,  we  wri te ,  a s  in Eq. (2)  

Usually, but not always, a=c, b=d (we shall from this point on consistently 

neglect a fixed minimum time of transmission). We  shall always require 

x(t) to be a real-valued measurable function, square-integrable on [a, b] . 
The channel is characterized by the kernel h(t, s )  which usually 

is to be defined for - 00< t, s < GO, although occasionally it wil l  be defined 

only for s, t in some suitable interval I. The channel is deterministic i f  

h(t, s)  is a real-valued function; in this case it is required that h satisfy 

J J  
A 

for any bounded measurable set  A in the plane. The channel is stochastic if 

h(t, s )  5 h(t, s; w ) 

is a real-valued stochastic process, with w 

space R (the probability variable o wil l  be suppressed).  

stochastic it is required that h satisfy 

an element of a probability 

If the channel is 

for any bounded measurable set  A. The condition (5) implies that (4) holds 

with probability one. 

4. 
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If we put k(t, t - s )  2 h(t, s )  then the equation 

may be written, 

t- a 
y(t) = 1 k(t, u)x(t-u) du, a s t l b .  

t-b 

We shall refer  to t, s and u in these equations, respectively, as  the 

observation time, emission time and age variables. If the channel is 

deterministic the integral operator defined by Eq. (6) or (7)  a s  an operator 

on LL (a, b) is Hilbert-Schmidt, fo r  any finite a, b. If the channel is 

stochastic, then with probability one this operator is Hilbert- Schmidt. It 

is convenient to work with both forms of the kernel, and we shall continue 

to use  the letters h and k as  in Eqs. (6)  and ( 7 ) .  

- 

We say a deterministic channel is realizable if k(t, u ) = 0 for all 

u < 0; has finite memory if there exists y ( t )  2 0 and bounded on every 

finite interval such that k(t, u) = 0 for a l l  u >y(t) ,  - 00 < t < 00; is time-in- 

variant if k(t, u) = k(t' ,  u )  for all t, t ' ,  so  that k does not acttlally depend 

on t .  We shall say a stochastic channel is realizable, has finite memory, 

or is time invariant if for every f in i te  t-interval [ a, b J 

conditions above hold except on a set of sample functions of k(t, s) of 

probability zero. 

k( ., .;w), -00 < s, t < 00, except for o ~ S 2 0 ,  where probA2o= 0 ) .  

the respective 

(This implies of course that the conditions hold for all 

We shall  assume in what follows that any stochastic channel to be 

considered wi l l  have the properties 

5. 



Ek(t,u) =0, 

and 

( 8 )  Ek(t, u) k(f, u ')  2 R(t, t';u, u ')  

exists and is continuous in all i ts  variables simultaneously. 

tion entails no loss of generality, because if there is a deterministic 

component it may be subtracted out andtreated separately 

condition wi l l  automatically imply (5). 

channel to be stationary in the observation time* (ot-stationary) if 

R(t, t';u, u ' )  is a function of t and t' only through their difference t - t' . 
In th i s  case w e  write 

The f i rs t  condi- 

The second 

We can now define a stochastic 

Ek(t, u)k(t', u ' )  5 R(t, t'; u, u ' )  5 R(t-t'; U, u ' ) .  

Before proceeding further the following notational conventions a re  

established. If f ( t )  is a square integrable function on Lz [I] , where L2 [I] 
is the L2 -space with respect to Lebesgue measure on an interval I, we  

denote its norm by llf 11 or /If / I 2  .. 

its norm in L, [I] by 11 f 11 - 
i ts  norm in L2 [ I X I] by 0 h 0 ; h( t, s )  may then be the kernel of a Hilbert- 

Schmidt (HS) operator H on L2LI] 

[HI .  

If it  is absolutely integrable we denote 

If h(t, s) is square-integrable on1 X I, we  denote 

and the HS norm of H is denoted also by 

One has [rH 1 = 1 h f  . The usual operator norm is denoted by 11 H 11. 
We shall say a deterministic channel is admissible if  it satisfies 

condition (4) and is realizable; a stochastic channel is admissible if i t  

satisfies conditions (8) and is realizable. 

channel, with respect to the interval [0, TI , 

We note that for an admissible 

* We do not bother to  distinguish weak stationarity from strict  stationarity, 
for, except in the Gaussian case where the two a r e  the same, w e  a r e  always 
concerned here with the former.  
of stachastic channels. 

See Bello (1963) for a complete classification 

6 .  
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If the 

actua 

J J  
0 0  0 0  

channel operator H has a time-invariant kernel so that k(t, u) does not 

ly depend on t, w e  put g(u) s k(t, u )  . 

3 .  Channel Measurements and Determinable Classes 

Part of the overall problem of communicating through unknown time- 

varying channels is making the short- t e rm measurements which a r e  intended 

to provide the temporarily valid estimates of channel behavior. 

a r e  questions of when these can be made and how. 

information restricting the class of possible kernel functions h(t, s ) ,  0 5 t, s I T, 

then there is no way to determine h(t, s ) ,  0 5 t, s 5 T, by measurements 

performed during the observation interval [ 0, T ] ; i. e. , given the equation 

y = Hx,xe L2[0, TI, H an arbitrary Hilbert-Schmidt operator on Lz [0, T) , 
there is no way to choose x so that knowledge of y determines H. Hence 

the c lass  of possible kernels must be restricted in advance in such a way 

that for suitable x, y = Hx does determine (or nearly determine) H. 

There 

If there is no a priori  -- 

A definition is stated below which is intended to offer a reasonable 

criterion a s t o  when a c lass  of channels can be measured effectively. 

definition essentially imposes t w o  kinds of restrictions: 

impose constraints to cut down on the 

equation y = Hx can be solved uniquely for H, the second is to insure that 

H can be approximated arbitrarily closely with a finite set  of measurements. 

The necessity of the first kind of restriction is evident if one considers the 

analogous situation (actually, a special case)  in  which x and y a r e  n-vectors 

and H is an n X n matrix. For then, solving y = Hx for H amounts to solving 

n equations for n2 unknowns, unless additional information about H is available. 

The 

the f i rs t  is to 
1 1  degrees of freedoml'of H so that the 

, 
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It should be noted that the point of view adopted in this Section does 

not include the notion of any statistical characterization of the channel. 

the moment at least  the channel istreated a s  an unknown operator, not a 

random operator. 

For 

We now introduce precise definitions. By a linear measurement of 

a channel in the time interval [O, T ] 

products (p 

is meant a finite collection of inner 

w) ,  k F 1, . . . K, %E L,[O, T] , defined whenwE L7[0, T] , where 

w(t)= [Hx](t)+n(t)  

k’ 

, 0 5 t 5 T 

is thereceivedwaveform, as in Eq. (1). In this context the transmitted 

In the definition signal x(t) wil l  sometimes b e  referred to as the test signal. 

to follow n(t) = 0. 

We shall say a c lass  % of admissible channel operators H is uniformly 

determinable ( E  , I) if  in  the time interval I there is a test signal x( t ) ,  a 

linear measurement {(pl , w ) ,  . . . , (pk, w)} , and a function f from k-dimensional 

Euclidean space R 

respect to operator norm, such that for each H in the Class  # 
to the HS operators on L,[I] which is continuous with k 

A 

is an admissible operator and 

(9) 

The test signal x( t ) ,  the linear measurement, and the function f we 

call a channel determination ( E  , I). If for fixed I there is for each E > 0 a 

determination ( E ,  I ) ,  w e  say the class of channel s is uniformly determinable 

(0, I) . If for each E > 0 there is an interval I( E ) , where I( E ) approaches GO 

a s  E * 0 and a determination ( E , I ( E  ) ) ,  we say the class  of channels is 

uniformly determinable ( 0 , ~ ) .  

- 

8. 
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The notion of uniform determinability is not restricted to classes 

of time-invariant channels, a s  w e  show later by examples, but we consider 

them first. They are of importance here especially as approximations for 

slowly-varying channels and as prototypes for channels with known trend. 

First, we observe that the class of all admissible time-invariant kernels is 

not uniformly determinable ( E , I ) ,  where I is any finite interval and E > 0 

is quite arbitrary. In fact, consider any ( E , I ) determination of H, 

f ( (  , Hx), . . . , ( c + ~ ,  Hx) ) .  NOW (Hx)(t)  J g(U) x(t-u) du , 0s t 5 T 

- 

t 
0 

can be interpreted a s  an operator X with kernel x(t-u) operating on 

g €  Lz[O,  TI 

Hence the mapping+ carrying g into z defined by z = (g) = 

((+I.,Hx), . - * a  (c+k, 

is a bounded linear mappingfrom L, [O, T] 

space, and cannot be 1: 1. Let g'f g" and suppose +g' = +g". Then for 

any constant a > 0, 

yield the same determination, while /lag'-a g" 11 may be a s  large a s  desired. 

Then if HI and H" a r e  the convolution operators with kernels g' and g" 

respectively, IIaH" -a"' 11 may be made as large a s  desired, thus violating 

the assertion that there w a s  given an (E, I) determination. 

into a finite-dimensional linear 

(ag' -aglr) = 0, so that the kernels ag' and ag." wil l  

If one considers the restricted class  of admissible time-invariant 

kernels for which 11 HI1 < C = constant, then a trivial refinement of the above 

argument shows that for each I there is an eo > 0 such that this c lass  is 

not uniformly determinable (E, I) f o r  E < e o .  

Example 1. There a r e  various ways of putting further restrictions on 

the class  of admissible time-invariant kernels to make them uniformly 



determinable. Fo r  example, suppose {$) is a complete orthonormal set  

in L A O ,  q, then the class of all admissible time-invariant kernels g(u) whose 

Fourier coefficients with respect t o  the + a r e  dominated in magnitude by 

the elements of a fixed sequence belonging to I 

(0 ,  I) , where I is the intervalto, T] . 

k 
is uniformly determinable 

To prove this we consider determinations in which the test signal 

x(t)  is an approximate 6-function and the function f is given by a partial 

sum of a Fourier series. 

kernel k(t, u )  5 g(u) a s  before. 

vanish for t 5 0, 

Let H be the unknown channel operator with 

We note that since x(t) and g(t)  both 

t og 

[Hx] ( t )  =r  g(u)x(t-u) du = x(t-u)g(u) du , Ost I T. s 
0 -00 

Take x ( t )  to be an approximate identity in Lz under convolution such that 

x (t)  vanishes outside(0, T] 

satisfies this condition, but there is a wide choice of such x including 

many sequences of continuous functions). Then the L, (0 ,  T) - norm of 

x 

n 
(e. g., xn(t)  = n for 0 5 t 5 1, zero otherwise, n n 

n’ 

llxnl/ , is equal to one for all n ( 11 x 11 must approach G O ) ,  and if n’ n 
00 
n 

yn(t) =) x n ( t -u)g(u)  du ,OS t 5 T 

then 

II Yn II II xn II  1 ll  g II = ll g I I  

(this follows, a fortiori for this truncated convolution from the usual inequality 

for convolutions with g(u) set equal to zero for u > T) . 
- 

We designate the 

10. 



truncated convolution above by x *g. The determinations referred to can n 

now be written 

where K and n are positive integers. 00 

Let (a } be any sequence of real numbers such t h a t z a '  < ob. Put 
k 1 k  

ob 

ob 

W e  now consider the class  of all kernels g(u) = 

which lbkl 5 a . Then, 

b (9 (u)  , 0 5 u 5 T, for k k  1 2 2 

k 

K ob 

Any determination of the kind in  question is given by 
K K 

!+ J y  Q = (+k# ',*g)(9k 
k=l k=l 

K ob 

for  some positive integer K and some approximate 6-function x . Given n 

an arbitrary z > 0, let K be chosen large enough so t h a t z  

co 

a i <  E' M ~ .  
K + l  



80 

co 

Then let NZ K be large enough that E,  a:< E' MZ, and in the sequence 
K 

of approximate &functions {xd , let n be large enough that I[$ - xn*% I!< E 

for k = 1,. . ., N. Since x has L, -norm of 1 ,  n 

and from the condition on x it follows immediately that n 

and 

Then, 

K 00 

By the choice of K the second term is dominated by E ' MZ . 
coefficients in the first  term one has, 

For the 

N 00 

12. 



and hence, 

N cg 

Thus the square of the first te rm on the right side of the inequality (10) 

is bounded by 

K K 

+ - + 1 ) 5 1 2 M  K 2 2  E , l q M E  (F N 

and w e  have 

K 

for  all  g satisfying the stated coni ition. Th,; implies the corresponc 

e r ro r  in HS operator norms is less than 5 M c G .  

If the + ( t )  a r e  taken to be the sines and cosines of the ordinary k 
Fourier series,  this condition says it is sufficient for uniform determina- 

bility that the energies in each frequency component be uniformly 

bounded and tail off uniformly a t  high frequencies. 

I 
13. 



Example 2. Consider admissible kernels with the periodicity property 

h(t, s) = h(t+ To, s + To) for  a l l real  t, u, which have finite memory y. 

Let n be an integer large enoughthat nTo > y, and let{+ (t)) be a complete 

orthonormal set  on[ 0, nTo 1 .  Each admissible operator, being 

Hilbert-Schmidt, can be expressed a s  an infinite matrix with coefficients 

k 

n'lb nTo 

00 

hZ coo. 
k j 

where 
k=1, j = l  

00 

Let{akj) be an infinite sequence of r ea l  numbers such that %j K 00. Consider 
k=l, j= l  

the subclass of the periodic kernels with finite memory which satisfy 

the condition sj 5 a' kj' 
channels is uniformly determinablef0,oo) . The proof runs parallel to  

the one in the preceeding example and wil l  not be given. The idea is 

that by using +I (t) a s  a test signal an arbitrarily good approximation 

can be obtained in the time intervalE0, nTo] 

the matrix. After a relaxation interval of length nTo, a second deter- 

mination will yield an arbitrari ly good approximation to the second column 

of the same matrix, etc. Channels with periodicity of this sor t  do not 

seem at the moment to  be of very much practical interest in communication. 

However, a slight modification may be of interest. 

linear system ( "plant" in control engineering) 

control and can be re-set to  a fixed initial state after being probed, then 

it can be tested again as  indicated and it will be uniformly determinable 

if the regularity conditions stated above a r e  satisfied. 

k, j = 1,2, . . This subclass of periodic 

for the first column of 

If the channel is a 

which is under man's 

14. 



In practice one is presumably not really interested in knowing how 

a channel transmits all  signals of finite energy, but only those in a 

certain subclass, a s  for example, those in a certain frequency band. 

The notion of determinability is extended, therefore, to apply td 

subclasses (not necessarily linear ) of signal functions. A class of admissible 

channels C is uniformly determinable (E, I) with respect to  S, S a 

subset of LdI'J, if  there is a determination yielding a bounded linear 

operator H on L, m such that for each H belonging to  C 
A 

Example 3.  An obvious and often practical way to get an approximate 

determination of a time-invariant channel is to estimate its transfer 

functions. 

defined to  be 

If the time-invariant kernel is g(u), the transfer function is 

d 
-Og 

It is assumed the channel has finite niemo1-ysY i-ind that Ilgll 
fixed constant (it is sufficient because of the finite memory that 11 g 1 1 2  I 
fixed constant). 

and as the class S the set of all functions x(t) E Lz [ 0, T] 
for a fixed u, 0 < u < 1, and fixed f > f >O, 

fb  fb 

I B = 

We take as observation interval the interval I = [O. TI , 
which satisfy 

b a  

15. 



00 T 
i2lrft 

dt = r x( t )e  dt. 
i2lrft 

where X(f) = r x( t ) e  
J 
-00 

.I 
0 

If IT is chosen too small the class  S is empty, of course. We  exhibit a 

uniform determination ( e ,  I) ,  where Q = Q (I), for the class  of channels 

specifiedwith respect to  S. The idea is to transmit something like a 

comb" of frequencies across  the frequency band, [f f 1 ,  of interest 
a' b 

and measure the response to each. The transfer function cannot vary 

rapidly because of the finite memory, hence an approximation to the 

transfer function across  the entire band can be obtained. 

ordinary frequency- response method of testing a linear time- invariant 

system, just a s  the determination of example 1 is the ordinary impulse 

response-method. 

II 

This is the 

First, by the assumption of finite memory, one has  

Y 

J 
0 

I I  g II ' 
1 

Now choose E > 0 arbitrarily; i t  is temporarily fixed. 

finite net of frequencies, 

0 <fb  -fmS 6. . Let x.(t) ,  i = 1, . . ., m, be signals which vanish outside the 

interval[O, TI, each of which (for convenience) has the same L norm. The 

Let (f.) be a 

- f .  = 6 o, i = 1, . . ., m, such that O<f -f 
1 

fi+l 1 1 a' E o *  

0 1 

1. 

i 'th signal is to be concentrated about the frequency fi; that is, the number 

r. > 0 given by 
1 

16. 



is to be small if possible. Put the transmitted signal x(t)  =.E xi(t) and 

put pi(t) = cuxi(t) (Pi[f) = d . ( f ) ,  1 where P. 1 (f) is the Fourier 

of p.(t)) where a is chosen so that 

1= 1 
transform 

1 

Then the quantity (p,Hx) is taken as an estimate of G(fi), and the step functia 
1 

- E o  < f l  f i + E 0 ,  i = 1,. .., m E (f) = (Pi, Hx), fi 

is an estimate of G(f) over the interval[fi-Eo , f,+E ] which includes 

* 
[fa' fb] Outside this interval set G ( f )  = 0. Denote the union of the intervals 



00 m 

+ cy 1 X.(f) G(f)Xk(f) df 
kk 'i 

1 - ai' 

8 
where A. is the set  complementary to A. Hence, 

1 1 

m 

where  the fact that Ig(f) 15 IIg 11 
the constants (r. and0 it follows that IIxiII - - CY(l-Ti) . Thus, by the 

Schwarz inequality, 

has been used. From the definition of 
1 2 1 

1 

18. 
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c" J - -  U. 
1 

1- u wi {4a1g I Y  + - + 
i kfi k 

0 1- u 1 

k f i  

Since Ilglll < B by assumption, the bound in (14) can be made arbitrarily 

small  .as T - c m .  First, 6 
small. The choice of 

enough to  allow each of the u to be arbitrarily close to 1. 

possible values of the u ' s  for given 6 
Landau (1962). If we call the bound on IG(f) - c(f) I given by (14), A, and 

denote the union of the intervals [f , f I,[-f - f  ] by A then for XES, 

can be chosen to make the f i rs t  t e rm arbitrarily 
0 
determines m. Then T can be chosen large 

0 

Estimates of k 
and T are given by Pollak and 

k 0 

a b  b a  

J 
-00 

J 
A 

This kind of estimate is of interest when u is very small, as  it 

usually wil l  be in examples from radio engineering. Of course, if the 

signals of interest tail-off uniformly in energy away from a reference 

19. 



frequency, u can be made arbitrarily small, for any T, by taking the band 

[fa, fb] wide enough. 

A class  of channels is determinable only if the "degrees of freedom" 

a r e  restricted in some way, or if there is the possibility that the measurement 

consists really of repeated measurements with the channel each time in  the 

same state. One way to res t r ic t  the degrees of freedom is to require time 

invariance; another possible way would be to require a l l  the channel operators 

to have the same principal axes, but this does not seem to be of practical 

interest; another way, which is a generalization of time invariance, is to 

require that all the channel operators evolve in time according to a known 

trend. The idea is that i f  

ho(t)  is the response of a channel to an impulse occurring at time zero, the 

response to an impulse occurring at time s is to be given by a new function 

which is the result of a trend operator + 

We investigate now a notion of known trend. 

operating on.ho. 
S 

For each s in some interval I (which may be infinite), let + be a 

bounded linear transformation with domain and range contained in Lz[O, y] 

which satisfies the conditions: 

S 

i) Domain + = Domain + for a l l  s, s' E I 
S S' 

ii) For all  h c  Domain + and a. e. t E [ O ,  y] 
S 

where 0 5 q (s, s ' )  = q(s', s) + 0 a s  s' + s and q is a 

continuous function of both variables for s, S ' E  I. 
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- 
iii) For any h, h e  Domain. 9 

S 

where 0 5 S ( s )  , S ( s )  * 1 as  s+O and C ( s )  is of integrable 
square on any finite intervalc I. 

Then{+> defines a class of channel kernels with known trend a s  follows: 

for any hoc Domain + put h(t, 0 )  5 h o ( t )  and then define 
S' 

h(t, S) 5 [+she] (t-s), s €1, t E [ S ,  s + y] . 

Condition i) is obviously necessary for the definition to make sense. 

Conditions ii) and iii) a r e  more or less arbitrary continuity conditions 

chosen to guarantee that if two channel kernels a r e  close together a t  one 

observation time they do not drift apart too rapidly, and to allow an easy 

characterization of determinable classes. In fact, if h(u, 0 )  = g(u) belongs 

to w, a uniformly determinable class (0 ,  T) of the type defined in Example 1, 

then h(t, s) = [+ ho] (t-s) belongs to  a uniformly determinable c lass  (0, T) .  
S 

To prove this statement let{x ( t ) )  be a sequence of approximate n 

6-functions, a s  in 1,which vanish outside the interval [O,p ] and satisfy the n 

condition that the product of the least upper bound of x say Bn, and p is 

bounded, p B 5 C. Then p has to approach zero, since x is an approximate 
n' n 

n n  n n 

6-functionJ and one has 

2 1. 



.. 

T T 
n n 

0 0 

by ii) . 
class  of the type specified. 

This approaches zero as  n-. 00,. uniformlyfor ho in a determinable 

Hence, in the space L2 [O, T], IIHx - Gx 11 = n n 

11 Hxn - g* xn [I is arbitrarily small  for n sufficiently large, uniformly over 

Here G is the convolution operator with kernel g(u) 2 h(u, 0 ) ,  and H is the 

integral operator wi th  kernel h(t, s). 

so that both 

Now suppose, given E ,  n is large enough 

and 

where K and N satisfy the required inequalities in the proof of example 1. 

Then consider the same determination a s  used there. One has 
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.. 

so that 

K K 

where IIY 11 5 E by the assumption above. Then 

K K 

K 

which by the result in example 1, 

The determin 

I  ME + E  

K 

tion F (+y yn ) + k yields an  approximation to h (t) = h(t, 0) 
K 

A A 
we call this  approximation h o  (t), i. e. ho = (+k, yn) +k. The final deter- 

mination of an approximate kernel is 

A A 
h(t, S )  = (+she) ( t  - S I ,  0 5 s < t 5 T. 

The square of the Hilbert-Schmidt norm of the e r r o r  is then 
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T T  

0 0  

T s+y 

T T 

and this, by (15) may be made uniformly small for H EW 
Example 4. This family of examples includes channel models for situations 

in which electromagnetic or sound radiation is scattered from a body of 

scat terers  which is expanding o r  drifting. Given a constant C > 0, let g(u) 

be a continuous function on the line vanishing outside [ 0, y] which satisfies 

the condition 

The se t  of such functions for which igij is less  than a fixed bound, say 1, 

is a uniformly determinable c lass  (0, T) of time-invariant kernels. In fact, 

if one takes a s  orthonormal set  on [0, y] the trigonometric functions 

2 2nnt 2~rnt 1 \]-cos- \It sin - - , n = 1, 2, ..., the nfth 
Y Y ' Y  Y 'p- 

Fourier coefficients of the class of g ' s  satisfying (16) a r e  dominated by 

C' Ilgll (k) where Cf > 0 is fixed (see, e. g., Titchmarsh (1939). 

Hence the subclass with 11 g 11 I Constant is a determinable c lass  of the type 

of Example 1. 
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Now define hit, s )  by 

where Q(s) ,  @ ( s )  a re  continuous in an interval I, ~ ( 0 )  = 0, p(0)  = 1 and 

P(s )  is bounded away from zero. 

a r e  channel kernels with known trend; condition i) of the definition is 

obviously satisfied, conditions ii) and iii) may be verified easily 

(condition (ii) requires, of course, the Lipschitz condition on g) . 
i f  one considers only those g(u) satisfying the Lipschitz condition and Ilgl) 

I constant, the class defined by Eq. (17) is uniformly determinable (0, T) . 

Functions h(t, s )  as defined by Eq. (17) 

Furthermore, 

The formal definitions of determinable class and determination have 

been introduced partly to indicate classes of channels for which an effective 

measurement is possible and partly to help keep straight the bookkeeping 

in an e r r o r  analysis of such measurements. 

is that a channel measurement is feasible if the channel is known from 

prior information to belong to a specified uniformly determinable class or 

to be "near" such a determinable class, perhaps only in a statistical or  

average sense. 

the actual chamel operztor. 

three reasons: 1) the presence of additive noise, 

being measured does not belong to  the determinable c lass  in question, but 

is only near to it, 3 )  the existence of residual e r r o r  in measuring an element 

of the determinable c lass  because of the finite nature of the determination, or 

because the class itself is too large. This third kind of e r r o r  has already 

been discussed in the examples of determinable classes. 

the first two kinds essentially a s  perturbations on the measurement of 

channels belonging to a determinable class. 

error .  

The idea being suggested here 

Then a determination suitable to this class is used toestimate 

In this procedure e r r o r s  may be caused f o r  

2 )  the fact that the channel 

We t reat  e r r o r s  of 

Consider the second source of 

Suppose the observation interval is fixed, I = [0, TI; suppose the 
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actual channel operator for this interval is H and that there is an 

operator Ho in a bounded uniformly determinable c lass  (E, I )  such that 

]1H - Ho / I <  I\. Let x (t) be the test signal, (p 

measurement and f the continuous function from K- dimensional space into 

L2 which constitute the (E, 1)-determination. 

w),k = 1, . . ., K, the linear k’ 

If there is no noise 

w(t) = (Hx) (t)  = (Hex) (t) + (H - Ho)x(t) 

and 

Thus, putting E = (p , (H - Ho )x) , the determination yields 
k k 

where 

A 
By hypothesis Ho, defined to be f (  (pl, Ho x) , . . . , (pk, Ho x) ) , satisfies 

116, - Ho II< E ,  hence 
A A 

IIAH-Hll5 IIB-Ho I I  + IIHo-Ho /I + Do-HI1 



l -  

Now, since f is a known operator-valued function which is uniformly 

I continuous on any closed b ounded set in K-dimensionalEuclidean space, 
i 

~ given any 6 > 0 there is an q > 0 such that for q small  enough so that 

q 11 x 11 11 pk 11 I q o ,  the above uniquality reduces to 
0 

W e  have actually proved that the class of all H which a r e  within a distance 

q of a bounded uniformly determinable class ( E ,  1 1, a r e  themselves a uniformly 

determinable class ( c I . 1  ) ,  where E a s  * 0. 

If there is noise present, or if the channel is known to be in or near 

a determinable c lass  only in a statistical sense, w e  can no longer establish 

sure  error bounds, but can only make probabilistic statements about e r ro r  

bounds. 

is characterized stochastically and w e  know only that for some Q > 0 H 

satisfies E 11 H-Ho 11 < CY, for some Ho in a prescribed bounded uniformly 

determinable class ( E ,  I ) . Further, let u s  suppose there is additive noise 

present and we know that for some B > 0 E 11 n 11 < 8. One has 

To illustrate this point, let u s  consider the case where the channel 

2 

2 

Let q1 ,y2 be arbitrary positive numbers. Then 



and if these events areindependent, one can say that with probability 

C u t  P 2  exceeding (1 - -) (1 - - 
q: 7; , 

where I E 1 5 q, IIx 11 11 $. If + q2 IIp 1 1 .  Again, the right side of the inequality 

( 2 0 )  approaches E a s  q l  qz + 0, but, of course, the e r r o r  bound is valid 

with probability nearly one only if a, /3 a r e  small. The condition that the 

determinable c lass  be bounded can be dropped by replacing the f i rs t  term 

of the inequality above by 

k k 

but then the bound is no longer uniform, and the (p., w )  must be known 

before the bound can be determined. 
1 

It is worth remarking that i f  preliminary smoothing filtering is done 

to minimize the relative noise intensity, the smoothing filters in cascade 

with the original channel define a new channel to be determined a s  above. 

4. Measurement and Use of Slowly-Varying Channels 

We consider now channels which a r e  varying with time in an unknown 

fashion, but at a sufficiently s low rate to permit approximation over a useful 

interval by time-invariant channels, or , more precisely, by integral 
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operators with time-invariant kernels. If a channel is alternately probed 

and used a s  a medium for communication, there a r e  e r r o r s  introduced, 

first in the channel measurement, and second in the extrapolation of the 

measured channel characteristics into the near future. 

treat this situation in a way which is partly statistical and partly deterministic, 

and which uses  the ideas of the preceeding section. 

It is proposed to 

We suppose that any transmitted signal x(t), T~ 5 t 5 T~ , r e s u l t s  in 

a received signal of the form 

7 2  

w(t)  = 1 h(t, s )  x ( s )  ds +nit) , TI s t - ( T 2  

T l  

where n(t) is noise (to be specified in more detail la ter)  and h(t, s) ,  defined 

for - 00 < t, s < cb , is an ot-stationary stochastic kernel with mean zero 

which characterizes the channel. 

knowledge of the physics of the channel, and preliminary statistical tests) 

that it is reasonable to model the channel a s  an ot-stationary stochastic 

channel and that the channel autocorrelation function, 

That is, we suppose (presumably from some 

R(T;u, v) = E k( t + T, u) k(t, v)  

is known, at least to a rough approximation. 

R(T;u, v)  has certain properties, the channel wil l  be slowly-varying on the 

average, so it makes sense to approximate the sample functions of k( t, u) 

by time-invariant kernels for t-intervals that a r e  not too long. 

procedures can be given, based on the results of the preceeding section, which 

wil l  yield such a time- invariant approximation. 

channel can then be used in the signal processing when the channel is used 

a s  a communication medium. 

If the autocorrelation function 

Measurement 

This approximation to the 
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We refer  to the Appendix for proofs and elaboration of the following 

facts about approximation by time-invariant kernels and tne connection with 

ot- s t  at ionarity : 

i) Let k(t, u) be an admissible kernel. The time-invariant kernel g(u) 
which most closely approximates k(t, u) in HS norm on the interval [ 0, TI 
i. c. which minimizes 

T t  

0 -  0 

ii) If k( t ,  u) is an admissible ot-stationary stochastic kernel, the 

stochastic process g(u) which best approximates (t, u) in the sense of minimizing 

2 
E I k(t, u) - g(u) I dt du 

0 0  

is still given by Eq. (A. l), and the error,  that is the value of (22), is given 

by lTITlmin (t, T )  

p (T-t, U )  du dT dt 
0 0 0  T- u 

where p (t. u) I R(O;u, U)  - R(t; U, u ) .  

Example 1 (continued). Consider a stochastic channel kernel function k(t, u )  

which is ot-stationary, and which has the property tnat with probability 

one for a.e. t, k(t, i:) satisfies the condition of uniform domination of 

30. 
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Fourier  coefficients with respect to some cons {+2 required in Example 1. 

Then the best time-invariant approximation of k(t, u) ,  given by Eq. (21), 

satisfies this condition, a s  does also the simple approximation given by 

simply fixing t in k(t, u) (for a, e. t )  . Thus a uniformly determinable c lass  

of the type of Example 1 is appropriate, and 11 H-HI1 satisfies the inequality 

(20) with the probability stated. 

E 11 H-Ho 11 , can be taken from Eq. (A. 7 )  o r  (A. 9), where the former gives 

the best possible (Le.  the smallest) value. 

measure of noise intensity, must be a datum of the problem. 

example the determination is simply a partial sum of a Fourier series, 

one has for the H - Hocontribution to the error ,  where ̂ g(u ) and go (u) a r e  

the time-invariant kernels for H and Ho respectively, 

A 

The number a; which is a bound on 
2 

The number 8, which is a 

Since in this 

A h  Ir 

A A 

K K 

whence 

and 

C Y =  8 
r 5 

Thus, from (20), one can say tnat  with probability exceeding (1- )(1 - 7)  

where E is tne residual e r ro r  in the determination,q > a, qt > a r e  arbi t rary 
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and C Y ,  b a r e  given a s  above. 

in this inequalityis fixed by the choice 01 E; once a residual e r ro r  E is 

established a sufficiently good approximate &-function x(t) is required. Since 

the L, -norm of x(t)  must be held at one (because of the normalization of 

the +k) the L2 -norm of x must exceed some lower bound. 

the determinable class may be used in obtaining the estimate (22) if (Y is 

chosen appropriately. 

minimum (Y, and this is achieved in this example by using for Ho tne best 

approximation a s  given by Eq. (A. 1 ), which implies, a s  alreaay stated, that 

(Y can oe given by Eq. ( A . 7 ) .  

One should recall  that a lower bound for Ilxll 

Note that any €& in 

The best estimate of this kind is obtained with 

In order to bound tne e r r o r  which occurs in using the measured 

value af the channel kernel function in the immediate future one need modify 

the inequality (21) only slightly. 

memory y, that it is to  be measured during the interval [ 0, a] 

during the interval [b, b + TI, when 0 < a < b < b + T. 

to be accomplished by reference to  the same determinable c lass  a s  

specified in the Dreceeding paragraph. 

Let u s  suppose the channel has finite 

and used 

The measurement is 

Let H be the actual channel operator during the measurement 

interval and H 

Ho is to be an operator tor the use interval whose kernel is a time-invariant 

approximation to that of belonging to the same determinable class a s  above; 
A 
Ho is the estimate of Ho which would be yielded by the determination if Ho 

were the actual channel operator and it there were no noise, ana H is the 

estimated operator. Suppose, 

the actual channel operator during the use interval. 
C 

A 

C 

3 2, 



and q l ,  q2, are  arbitrary positive numbers. Then, 

and since 

A A n  A 
H - H = ( H  - Ho) + (Ho- Ho) + (Ho - Hc) 

C 

one can say by an argument paralleling the previous one that, with probability 

exceeding 

In the previous paragraph it was pointed out that the inequa ity (21) was 

derivable with suitable constants no matter what Ho was used for comparison, 

but that the best result was obtained it E IIH - Ho 11' was a minimum. Again, 

( 2 2 )  follows with suitable constants for any Hoin the determinable class, but 

it is no longer clear what is the best choice of Hoin deriving the inequality 

since 11 H - Ho 11 and 11 Ho - Hc 11 can have quite complicated behavior relative 

to each other a s  Hois varied, depending on the actual autocorrelation function. 

If, for example, w e  take for Hothe integral operator on L2 [b, b + TI with 

kernel k(c, u)  where c is a constant, 0 5 C 5 b + T, then by (A. 10) 5 and L Y ~  

can be taken 

h A  



2 

2 
- R(t-c+b)] dt 

There is a hidden constraint on the measurement interval[ 0, a] which 

is implicit in these inequalities. 

on an interval of length T, determining & so that IFH0 - Ho 115 E as required 

necessitates a measurement interval of length nearly y, and its length must 

be 2 y in the limit as  E *O. Thus, practically one can say that a >y. For a 

to be greater than is necessary to  make the determination weakens the e r r o r  

inequality (22), however, by increasing0 1. Thus, the interpretation of (22) 

agrees with the common sense idea that one can apply the test signal, take 

measurements until the channel stops ringing, then use the channel until it 

has drifted fa r  enough to cause an unacceptable error. 

Suppose T >  y. Then sinceHo is an operator 
A A 

The successive measurements of the channel are, of course, available 

for improving an estimate of R(t; u, v), but that aspect of the problem will not 

be discussed here. 

, Example 3 (continued). This will  just  be indicated. Let a stochastic kernel I 

function which is ot-stationary have finite memory 'y. 

averaging on t preserves the finite memory property, this channel can be I 

re fer red  to a determinable class of the type discussed in Example 3. 

the probabilistic inequality of ( 20) is valid, where the determination referred 

to is that of Example 3. 

the subset of nearly-badlimited signals introduced in Example 3. 

e r r o r  which occurs in using the estimated channel operator at a future time. 

Then again since 

Then 

A 
In this case, of course, H and H a r e  restricted to 

The 
1 

is subject to bounds established in the same way as in the example above. i 
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5. An Application to Signal Detection and Measurement 

The material of the preceeding sections is intended to describe classes 

of channels which can be measured approximately, and to provide estimates 

for how much the actual channel operation may differ from what the receiver 

thinks it is. 

problems certain standard statistical data-processing procedures may be used, 

if information about the channel is continuously updated, and how much loss 

in performance may be incurred because of the time-varying nature of the 

channel. 

(Grenander 1949). 

Results of this kind can be used to show when in signal-detection 

We illustrate this application in this section with a known example 

Let the received signal be 

where now we fix the noise n(t) to be a Gaussian process continuous in mean- 

square and with mean zero, and y(*;a) to be aknown real-valued function 

E Lz [ T ~ ,  TZ ] for each 0 in a parameter set A, where A is either a finite set  or 

a compact subset of R k' Let R(t, s) = E n(t) n ( s ) ,  and let 
T 
2 

R!t, s )  + ( s )  ds = h + (t!: 7: 5 t 5 T2 
n n n  

T 
1 

The A n n 
normal and real  and that the integral operator in question has  zero null 

space, so that {+A is a complete set. We define 

a r e  non-negative; we shall assume the {+ (t)) a r e  taken to be ortho- 
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The w a r e  jointly Gaussian random variables. If for each CY E A, k 

yt < 00, then the series defining f(w; C Y )  converges with probability 

one and also in mean square with respect to the measure induced by any 

O C A .  Also 

and f(w; a) is Gaussian. The subscript CY r e fe rs  to the measure induced 

(24) 

by the parameter CY . Then the logarithm of the "likelihood ratio'', i. e., 

the logarithm of theRadon-Nikodym derivative of the two probability measures 

induced on the sample space of the w(t) by the parameters u1 and QO is given by 

3 6 .  



where C(a ,  , a,) depends on s(t;a0 1, s(t;(Y, ) but no on w(t) .  

inference procedure (e. g., hypothesis test or point estimation) based on 

likelihood ratios is determined by the test functionals f(w;a)  . 
of any such inference procedure depends on the distributions of the f(w;cr) ; and 

since these a re  all jointly Gaussian, on the first and second moments of the 

Thus any 

The behavior 

f (w;a)  . Thus, for the class  of sure-signal-in-noise problems indicated, and 

from an applicational point of view this is a wide class, one can investigate 

the effect of unknown perturbations on the prior data of the problem entirely 

by first and second moment calculations of the f (w;a)  . 
said to be stable (5)  i f  a small change in the noise covariance (in the sense 

of Lz -norm) necessarily causes only a small change in the distribution 

functions of the f(w;a) . 
that 

Such a problem is 

A necessary and sufficient condition for stability is 

n 

If this condition (2.6) 

the mean value of the test functional f(w; a. ) varies continuously with pertur- 

bations of the signal y(t;a, ) , where again the Lz -norm is used to measure 

the perturbations. In fact, let y '( t ;a)  = y(t;a) + e( t ;a) ,  where  e(t;a) is to be 

regarded as a perturbation, be the actual received signal so that 

holds then it also follows immediately that for any CY 

w'(t) = y'(t;cr) + n( t ) .  
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The test  functionals f ( -  ; 0 0 )  a r e  unchanged because they represent fixed data 

processing procedures. However, their mean values a r e  changed, 

00 

k 
A 

k A 

where 

Thus Eaf(wf;(Y O )  = E f(w;Qo) + ek(P)yk(cYo) , and the absolute value of 
(Y 

'k 
1 

00 

. The variances of the Y2 Q 0 ) y  
the change inthemean is 5 I].(@) 11 E /  -- k 

i ' i  
f ( , .  ; (Y) a re  unaffected by changes in actual received signal. 

The simplest example in  which to car ry  through the effect of pertur- 

bations on the final inference is a pure detectionproblem, but even though 

simple i t  illustrates the situation adequately. 

T~ 5 t I T ~ ,  a known function, and take y(t;1) = 0. Then a likelihood test for 

Let (Y = 0 or  1, take y(t;O) = s ( t ) ,  

the presence of the signal s ( t )  is to compare f(w,O) with a fixed threshhold for 

q , and decide the signal is present if f(w; 0 )  > q . One has then that the 

probability of correctly deciding that the signal is present is 
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2 ( 0 )  
00 

where b = y k  is the signal-to-noise ratio. Now suppose that the actual 

k A 

signal is s(t) + e( t ) ,  and put 

Then 

00 1 2  - -U du. 
2 1 

P(f(w;O) > 7 I cy = o} - 

47- 

The change in the lower limit of the error function integral is 

-c ekYk(o) 
'k 

and the absolute value of this change is less than or equal 
1 

ll e II 

L -J 

Of course the effect of this perturbation on the probability 

to 

of detection depends 

3 9. 



where on the tail of the Gaussian distribution - q - b  is located, and a s  the 
6 

signal-to-noise ratio b becomes larger the effect is less.  

Now for  the time-varying linear channel 

y(t; 0) = h(t, s )  x (s;(Y)ds, 7 1  I t I  T 2  ( 31 ) s T2 

T l  

and if h(t, s) is known (it is assumed X(S;CU) is known) one has the necessary 

prior data on the signal for a sure- signal-in-noise problem. The application 

of channel measurement techniques is obvious. 

channel kernel h(t, s) (or k(t, u )  to yield a nominal received signal for each 0 :  

T 2  

One uses  the estimated 
A A 

yo(t;O) = r nh(t, s)x(s;(Y) ds, TI 5 t 5 T 2 .  

T1 

The data processing is based on yo (t;(Y) . 
y(t;cu) is given by Eq. ( 3l ) ,  and e(t;cY) = y(t;cu) - yo(t;(Y), is the difference 

between it and the nominal signal. Then, 

The actual received signal function 

From results of the type of those obtained in Section 4, one can say that for 

certain numbers E,, A ( Q )  > 0, I/.(-; (Y)  11 I A ( 0 )  with probability 2 1 - r ,  and 

hence with probability 2 1 - E the mean-value of the test  functional f (w;a)  is 

changed by less than 



from its nominal value, where y kO 
to 9 of the nominal signal yo (t; Q )  . It should be mentioned that the factor 

(a) is the Fourier coefficient with respect 

k 

2 
can also be written a s  11 z( * ; LY ) 11 where z( t ;a)  is the solution of 

T 2  1 R(t, s )  z(s;Q) d s  = yo(t;Q), T 

T1 

T~ 5 t 5 t 2  . 

This equation has a solution in L z [ ~ l ,  r2 ] 

and it is unique by the assumption that the integral operator has zero null 

space. 

i f  the series in ( -26 )  converges, 
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Appendix: The Approximation of Observation- Time- Stationary Kernels 
by Time-Invariant Kernels 

The best mean- square approximation to  an arbitrary realizable 

kernel by a time-invariant kernel is obtained by averaging the original kernel 

over the observation time. More precisely, one can state the following: 

Lemma. If k(t, u) z L2 [ 0, TI x [ 0, ?] and k(t, u )  = 0 for all  u > t, then 

T 

U 

is defined for a.e. u, O S  u 5 T, 

f f g 2  (u)du coo, 

0 0  

and amongst all  functions g' (u) satisfying (A. 2), g provides a minimum for 

the expression 

In other words, g(u) is the kernel for the realizable, time-invariant 

integral operator which most closely approximates the channel operator in 

Hilbert- Schmidt norm. 

Proof: 

on [ 0, TI x [ 0, TI 
bound for the expression (A. 3 )  with g(u) used for g '(u):  

Since k(t, u) is of integrable square on [0, T] x[O, T] it  is integrable 

and hence g(u) is defined for a. e. u. We calculate a 
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T T 1 [k(t, u) - k(T, u) ]  dt 1 [k(t, u) -k(r ' ,u)] dT1 dtdu 

o u  U 0 

-k(t, U) k(T, U) + k(T, U)  k(Tf, u)} dT dr' dt du 

T T  =s { 1 k2 (t,u) dt - T - u  l y T k ( t J u )  k ( r ,u )  d td r )du  
o u  u u  

Thus lgl 5 2 0 k I  and (A. 2 )  is satisfied. Furthermore, it follows from the 

Schwarz inequality applied to  the last t e rm in Eq. (A. 4) that Ilk-gll = 0 

if and only if k(t, u)  does not depend on t. Now g' = g will minimize l k - g j  

if 

T t  T T  

J J  
0 0  

J d  
0 0  

for any q (u ) E L2[0, TI. This condition reduces to the requirement that 

T(u)[k(t,u) - g(u)] dudt = 0 
0 0  s" 
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o r  

0 0  U 

for any (u) E LJO,?] . This integral can be rewritten 

- 
0 0  0 

The bracketed expression in (A. 5)  is an anti-symmetric function of t ,T; 

hence, since the double integral in (A. 5) is over the square 

0 5 t 5 T, 0 5 T 5 T, it vanishes for all q (u) a s  required. 

If k(t,u) is a stochastic kernel satisfying the condition (A.3) then 

it follows immediately that g(u) as given by Eq. (A.1) is defined, except 

for a set of realizations of k(t, u) of probability 

minimizes Ell k-g 11 within the class of all  g(u) 
2 

zero, for a-e. 

satisfying E 1'1:':~) du < a. 
0 0  

The mean- square e r r o r  of approximation of an ot- stationary kernel 

by the best time invariant one as given by Eq. (A, l), i. e., the expected 

value of the HS norm of the difference, Is given for an arbitrary interval 

[a, a+Tl by 

a+T t-a a+ T 

a 0 a+u 

a+T 2 

= E 1 T1 ( T-U) latT I 1 [k(t, u) -k(T, u)]  d l  dt du 
a+u a+u 0 
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{R (0; U, u) -R(t-T1;u, u) 

0 a+u a+u a+u 
-R(T -t; u, u) + R(T -T';u, u)) d-r dT' dtdu 

= 1 T(T-u) R(0; U, u) du 

1 s%' R(T-t;U, U) dT dt du 
0 

+ 1 ST! T R ( ~  - T'; U, U )  d r  d r '  du 
0 u u  

= T(T - u) R(O;u, u) du 
0 

- S 'S 'S 'L  T-u {R(T-t; U. u)) - dT dt du. 

o u  u 

(A.  6 )  

One notices in Eq. ( A . 6 )  that the mean-square e r ro r  of the time-invariant 

approximation does not depend on the translation parameter a; this is t rue 

because of the ot-stationarity and would be expected. 

may be rewritten as 

The right side of Eq. (A. 6 )  

o u u  

where p (t, u) 

is a statistical measure of how rapidly the channel is varying. 

R(O;u, u) - R(t;u, u) 

The rather awkward expression ( A .  7) can sometimes be replaced 

by a somewhat crude but very simple upper bound as follows. 
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I 

* 

Let b=min[ T, y] , y the upper bound on the memory of k(t, u) . Then 

z 
du dt 

2 
du dt, 

where 

6 

R(q ) ,= 1 R(t;u, u) du. 
0 

I 1  Now if the condition R(0) -R(q ) 5 E for Iq I 5 T is satisfied, the e r r o r  

bound (A. 9) is less  than or equal to 2 E T. 

In general, the mean-square e r ro r  (in the sense we have been 

using that term here) in approximating a stochastic kernel over a finite 

interval by any linear transformation of the same kernel can obviously be 

expressed in te rms  of its autocorrelation function. One other simple 

example of this, which is used here, is 

46. 

(A. 8 )  

0 0  0 

since the integrand is positive and since - 
kernel yielding no better approximation o than the optimum one. The 

k(T, u) dT is a time-invariant 
T %  r’ 

right side of (A. 8)  can be easily evaluated to give 

(A. 9 )  



= Z l  'lt[€t(0; u, u)  -R(t-b; u, u)]  dudt 
0 0  

f T  
S 2 \  [R(O) -R(t-b)] dt  

J 
0 

where R(q ) is defined as before. 

(A. 10) 

I 
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